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Abstract

In this article, we present efficient and stable numerical schemes to simulate three-dimensional quantum dot with irreg-
ular shape, so that we can compute all the bound state energies and associated wave functions. A curvilinear coordinate
system that fits the target quantum dot shape is first determined. Three finite difference discretizations of the Schrödinger
equation are then developed on the original and the skewed curvilinear coordinate system. The resulting large-scale gen-
eralized eigenvalue systems are solved by a modified Jacobi–Davidson method. Intensive numerical experiments show that
the scheme using both grid points on the original and skewed curvilinear coordinate system can converge to the eigenpairs
quickly and stably with second-order accuracy.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Aiming at three-dimensional (3D) semiconductor quantum dots (QD) with irregular shape [3], we intend to
develop simple yet efficient and accurate numerical schemes to compute all the bound state energies and the
corresponding wave functions of the heterostructure. Numerical simulations of QDs have played an important
role for investigating QDs’ electronic and optical properties (e.g. [13,16,21]). Among existed methods, finite
difference based methods are popular due to their simplicity and possibility to achieve high order convergence
rate. However, relatively few numerical schemes focus on 3D settings because of the complicated nature of the
QD models. Furthermore, these schemes are usually limited to specific QD geometries like cylinder [10,19],
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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cone [11], and pyramid [5,9,14]. To better simulate QDs fabricated in laboratories, simple and efficient numer-
ical schemes that are able to handle 3D irregular QD models would be useful and essential.

We consider a single particle conduction band model that a radial symmetric irregular shape QD is embed-
ded in the center of a cylindrical matrix. Fig. 1 shows a structure scheme of the model. The model is described
by the Schrödinger equation:
�r � �h2

2mðxÞrF
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In Eqs. (1) and (2), �h is the reduced Plank constant and the eigenpair (k, F) stands for the total electron energy
and the corresponding wave function. The electron effective mass m(x) and the confinement potential c(x) are
material constants and they are piecewise constant functions of the space variable x:
mðxÞ ¼
m1 in the dot;

m2 in the matrix;

�
cðxÞ ¼

c1 in the dot;

c2 in the matrix:

�

Associated with the discontinuity in m, we have the following Ben Daniel–Duke interface conditions
F jDþ ¼ F jD� ;
�h2
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where D is the domain of the QD, n is the normal direction, and the subscripts + and � denote the corre-
sponding outward normal derivatives of the interface that are defined for the matrix and dot regions, respec-
tively. Finally, the Dirichlet condition is applied on the boundary of the cylindrical matrix. For the
convenience of further discussions, we define
jðxÞ ¼ �h2

2mðxÞ ;
and thus
j‘ ¼
�h2

2m‘

;

for ‘ = 1 and 2 in the dot and matrix, respectively.
Quantum dot

Matrix

Fig. 1. Structure schema of the quantum dot model.
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Several challenges exist for solving the target problem. First, naive discretizations usually result in low accu-
racy approximation in a irregular shape QD. This is because the interfaces are most likely not aligned with the
grid but rather crosses between the grid points, if the Cartesian or cylindrical coordinate is used. In other
words, for the grid points around the interfaces, the stencil of a regular finite difference will contain grid points
from both sides of the interfaces. Consequently, the standard difference quotients across the interface will not
produce accurate approximations to the derivatives, due to the non-smoothness of material parameters. The
second difficulty is to solve the large-scale generalized eigenvalue systems arising in the discretizations of
the Schrödinger equation in an efficient manner. Since the target eigenvalues are located in the interior of
the eigenvalue spectrum, some eigenvalue solvers solve for all the eigenvalues and then identify the target
eigenvalues. However, such manners can be extreme time consuming. On the other hand, some dedicated algo-
rithms may be used to find only the target eigenvalues. But such methods may suffer from inefficient precon-
ditioners or numerous non-zero fill-in entries. In short, standard methods like [1,2,6] cannot be recommended
due to the inefficiency and instability. See [8] for detail.

To overcome the obstacles, we have accomplished the following results:

� Proposing three discretization schemes based on: (i) the curvilinear coordinate system fitting the irregular
interface, (ii) the skewed curvilinear coordinate system induced from the first curvilinear coordinate system,
and (iii) the mixed coordinate system integrating the two coordinate systems. The finite difference formulas
and related approximation schemes are discussed in detail.
� Modifying the Jacobi–Davidson large-scale eigenvalue solver [8] by suggesting an adaptive scheme for

approximating the span vectors. The adaptive scheme carefully incorporates several linear system solvers,
preconditioning strategies, and dynamic stopping criteria. The new eigenvalue solver successfully achieves
better performances.
� Conducting numerical experiments to justify the schemes’ feasibility, efficiency, robustness, and accuracy.

The numerical results show that the third scheme developed over both of the original and skewed curvilin-
ear coordinate systems is the quickest and the most stable scheme with second-order convergence rate.

It is worth noting that the main idea of our discretization schemes is motivated from the Jump Condition Cap-
turing Schemes (JCCS) described in [7,20]. The JCCS solves the elliptic interface problem:
�r � ðjðxÞruðxÞÞ ¼ f ðxÞ; x 2 X n C; ð4Þ

where j(x) is piecewise smooth but discontinuous across a smooth interface C � X. Interface conditions [u]C
and ½jðxÞ ou

on �C are prescribed in the problem. The notation [Æ]C denotes the difference between the limits from
the interior and exterior of the interface C. Even though Eqs. (1) and (4) are similar in the sense that they share
the same Laplace operator and interface conditions, the discretization of (1) results in eigenvalue systems,
while the discretization of (4) leads to linear systems. The difference thus makes the analysis of the eigenvalue
systems non-trivial and leads to other computational challenges.

The paper is organized as follows. Section 2 illustrates the curvilinear coordinate systems and three finite
difference schemes based on the coordinates. Section 3 presents a modified Jacobi–Davidson method for solv-
ing the large-scale generalized eigenvalue systems arising in the discretization schemes. Section 4 presents
implementation details and numerical experiments results to justify the performance of the proposed schemes.
Section 5 finally concludes the paper.

2. Discretization and finite difference schemes

We develop three finite difference schemes to solve the irregular interface eigenvalue problem (1) in this sec-
tion. As shown in Fig. 1, the target QD has curve heterojunction structure. It is thus nature to define grid
points on a curvilinear coordinate fitting the irregular interface, so that we can avoid using finite difference
points that are located on both sides of the heterostructure. To be precise, our first scheme is designed on
a curvilinear coordinate system such that some specific constant coordinate curves coincide with the hetero-
structure interfaces and the matrix boundaries of the QD model. Based on the curvilinear coordinates, our
second scheme uses the skewed directions of the previous curvilinear coordinate system which results in sim-
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pler formulas. Finally, our third scheme combines the first two schemes by a symmetric averaging. Numerical
experiments in Section 4 further show that this method is the quickest and the most stable scheme among the
three ones, though this scheme also leads to the most complicated formulas.

We define a curvilinear coordinate system in Rn as a continuous function G : Rn ! Rn. The computation
domain U is contained in the domain of G and the physical domain X is covered by the image of G. We assume
that the restriction of G to U is one-to-one, and therefore the inverse G�1 within X exists. By such assumption,
we can identify points between the physical domain X and computation domain U. For example, in R2, we let
n1 and n2 be the variables in the computation domain and x = (x1, x2) be the position vector in a 2D physical
domain. We then identify x to (n1, n2), if x ¼ Gðn1; n2Þ. The curvilinear coordinates of x determined by G is
ðn1; n2Þ ¼ G�1ðxÞ:

We now illustrate how the curvilinear coordinate systems over the physical and computational domains are
chosen as shown in Fig. 2. For the QD model specifically, we choose an appropriate curvilinear coordinate
system in the following way. Two of physical domain coordinate curves, which are obtained by setting two
particular coordinates equal to the constants, coincide with the top interface CT and bottom interface CB

of the QD. The exterior boundary of the matrix should also be aligned by certain coordinate curves. A logical
mesh is then formed by the intersections of the coordinate lines in a certain curvilinear coordinate system. For
simplicity, we assume the computational grid points are distributed uniformly along each of the coordinates
and have the step sizes Dn1 and Dn2 in the n1 and n2 directions, respectively. The set of two number
(iDn1, kDn2), for i = 1, . . .,M and k = 0, . . .,N, is a typical grid point in the computation domain. The curvi-
linear coordinate system should also fit the QD heterojunction in top and bottom by, for example,
n2 = N2Dn2 and n2 = N1Dn2, for a certain N2 and N1 between 0 and N.

Note that we do not require the coordinate system to be orthogonal in the physical domain. For the con-
venience, we use the pairing (i, k) to indicate the point which has the discrete curvilinear coordinates
(iDn1, kDn2). We also use fi,k to indicate the value of the function f at the point x(iDn1, kDn2).

Based on the chosen curvilinear coordinate system, Eq. (2) can be re-written as
Fig. 2.
irregul
and n2
�1

r
1ffiffiffi
g
p

X2

a;b¼1

onaðrj ffiffiffiffiffi
gg
p ab

onb F Þ � j
r2

o2
hF þ cF ¼ kF ; ð5Þ
where the metric tensors are defined by
gab :¼ rna;rnb� �
; ð6Þ

gab :¼ ox

ona ;
ox

onb

	 

; ð7Þ
and
g :¼ det
g11 g12

g21 g22

� �
: ð8Þ
ξ2 = N2 Δξ2

ΓT

ΓB
ξ2 = N1 Δξ2

ξ2

ξ1

Curvilinear coordinate systems for the physical and computational domains are shown in Parts (a) and (b), respectively. The
ar heterojunctions are fitted by the curves CT and CB as shown in (a). The curves are mapped to the corresponding lines n2 = N2Dn2

= N1Dn2 in (b).
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The notation ÆÆ,Ææ denotes the Euclidean inner product. We note that, by Eqs. (7) and (8),
ffiffiffi
g
p

is the Jacobian
determinant of x with respect to n, i.e.,
ffiffiffi

g
p ¼ det

ox

on

� �
: ð9Þ
Furthermore,
X2

i¼1

gaigib ¼ da
b; ð10Þ
for a, b = 1,2. Detail descriptions of vector analysis over curvilinear coordinate systems can be found in, for
example [4].

While the QD model can be described by Eq. (5) in three-dimensional on the curvilinear coordinates, we
may rewrite the equation to transform the 3D problem to a sequence of 2D problems and gain significant sav-
ings in computation. Since the solution F is periodic in h direction, we can approximate it by the truncated
Fourier series as
F ðn1; n2; hÞ ¼
XL=2�1

n¼�L=2

bF nðn1; n2Þeinh;
where bF nðn1; n2Þ is the complex Fourier coefficient given by
bF nðn1; n2Þ ¼ 1

L

XL�1

j¼0

F ðn1; n2; hjÞe�inhj ;
for hj = 2jp/L, and L is the number of grid points along the h-direction. Substituting the above expansions into
Eq. (5) and equating the Fourier coefficients, we derive bF n satisfying the 2D Schrödinger equations
�1
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1ffiffiffi
g
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onaðrj ffiffiffiffiffi
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p ab

onb bF nÞ þ cþ n2

r2
j
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ffiffiffi
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� �bF n ¼ r
ffiffiffi
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p

kbF n; ð11Þ
for a certain Fourier mode n. By using the above transformation, we only need to solve several 2D problems
for a certain Fourier modes to obtain all the eigenpairs that are of interest. Note that usually the number of 2D
problems needed to be solved is much less than N. Similar dimension reduction techniques have been applied
to the cylindrical quantum dot models in [19]. In that paper, however, the authors derive the formulas from
the viewpoints of matrix analysis.

2.1. The first scheme: curvilinear coordinate system based

Now we derive our first finite difference scheme for solving the 2D problems (11). The finite difference for-
mulas are carefully formulated by using the grid points located on the chosen curvilinear coordinate system, so
that the scheme can achieve the second-order convergence rate numerically.

We first define the difference and averaging operators as follows:
ðDn1wÞi;k ¼
1

Dn1
wiþ1

2;k
� wi�1

2;k

� �
;

ðDn2wÞi;k ¼
1

Dn2
wi;kþ1

2
� wi;k�1

2

� �
;
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ðA1wÞi;k ¼
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2;k
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2;k

� �
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2
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2

� �
:

Using these operators, the summation
X2
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onaðrj ffiffiffi
g
p

gabonb bF nÞ
in the first term of Eq. (11) at grid point (i, k) is approximated by
ðL11
bF nÞi;k þ ðL12

bF nÞi;k þ ðL21
bF nÞi;k þ ðL22

bF nÞi;k; ð12Þ
where
ðL11
bF nÞi;k ¼ Dn1ðA2ðr
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jg11
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h ÞDn2 bF nÞi;k; ð14Þ

ðL12
bF nÞi;k ¼ Dn1ðA2ðr

ffiffiffiffiffi
gh
p

jg12
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jg21
h A2Dn1 bF nÞÞi;k; ð16Þ
and gh and gab
h denote the approximations of the metric tensors g and gab, respectively. Note that the full

expressions for L11F̂ n, L22
bF n, L12F̂ n, and L21F̂ n can be found in Appendix.

Based on the formulas discussed above, Eq. (11) is approximated by various c and j as shown below. The
choices of c and j are depended on the locations of the central grid points, x(i, k) or xðn1

i ; n
2
kÞ. For a certain

index k, c = c1 and j = j1, if the (virtual) grid point corresponding to k þ 1
2
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2
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�
X2

a;b¼1

ðLab
bF nÞi;k þ

ri

4
ðA2A1

ffiffiffiffiffi
gh
p

cÞi;k þ
n2

4ri
ðA2A1

ffiffiffiffiffi
gh
p

jÞi;k
� bF n

i;k ¼
ri

4
ðA2A1

ffiffiffiffiffi
gh
p Þi;kkbF n

i;k: ð17Þ
Finally, by suitably combining all the finite difference schemes discussed above, we obtain the resulting gen-
eralized eigenvalue system under the (computational) curvilinear coordinate system:
AL
bF ¼ kBL

bF ; ð18Þ
where bF is the unknown vector containing the wave function on the grid points, AL contains nine non-zero
components in every row, and BL is a diagonal matrix. It is worth mentioning that matrix AL in (18) is
symmetric and positive definite, thanks to the approximation scheme defined in Eqs. (13)–(16) as shown
in [20]. Furthermore, eigenvalue solvers can be benefit from this property in the sense of efficiency and
stability.

2.2. Skewed coordinate system

Alternatively, we consider the equation on a skewed curvilinear coordinate system as shown in Fig. 3. To be
specific, variables of the skewed coordinate system (g1, g2) are defined by
g1 :¼ n1Dn2 þ n2Dn1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDn1Þ2 þ ðDn2Þ2

q ; ð19Þ

g2 :¼ n2Dn1 � n1Dn2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDn1Þ2 þ ðDn2Þ2

q : ð20Þ
This definition also leads to the fact that the step sizes on the g1 and g2 directions are identical; that is,



ξ2 = k2Δξ2

ξ1 = k1Δξ1

η1 = k3 Δη1

η2 = k4 Δη2

C1

C2

C3

C4

Fig. 3. Schema of the skewed curvilinear coordinate system is shown in part (b), while the physical domain coordinate system is shown in
(a). In (a), the curves C1 and C2 are mapped to the lines n1 = k1Dn1 and n2 = k2Dn2 in the curvilinear coordinate system, respectively.
Similarly, the curves C3 and C4 are mapped to the lines g1 = k3Dg1 and g2 = k4Dg2 in the skewed curvilinear coordinate system,
respectively.
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Dg1 ¼ Dg2 ¼ 2Dn1Dn2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDn1Þ2 þ ðDn2Þ2

q � Dg:
The idea of using the skewed curvilinear coordinate system is motivated by [20]. In that paper, the author
develops finite difference formulas on the skewed curvilinear coordinates to solve the elliptic interface problem
(4). The scheme results in the linear systems that are consistent, symmetric, and positive definite. Such matrix
structures obviously favor certain linear system solvers. It is still open whether similar conclusions, regarding
the matrix structures and the favor in eigenvalue solvers, can be drawn while the resulting scheme (28) is
applied. However, the finite difference scheme based on the skewed curvilinear coordinate does lead to simpler
formulas and a more sophisticated hybrid scheme in Section 2.3.

The equivalent formulation of the 2D Schrödinger equation (11) on the skewed curvilinear coordinate
(g1, g2) for a certain mode n can be represented as
�
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l;m¼1

oglðrj
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� �bF n ¼ kbF n; ð21Þ
where the metric tensor with respect to the skewed variables (g1, g2) is given by
ĝlm :¼ hrgl;rgmi; ð22Þ

ĝlm :¼ ox

ogl
;
ox

ogm

	 

; ð23Þ

ĝ :¼ det
ĝ11 ĝ12

ĝ21 ĝ22

� �
: ð24Þ
An obvious conclusion is that
ffiffiffî
g

p
¼ det
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og

� �
¼ u

ffiffiffi
g
p

; where u ¼ 1

2

Dn1

Dn2
þ Dn2
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� �
ð25Þ
and
 X2

c¼1

ĝlcĝcm ¼ dl
m : ð26Þ
Now we approximate Eq. (21) by second-order centered differences. By defining the skewed difference
operations
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in the first term of Eq. (21) at grid point (i, k) is approximated by
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and ĝh and ĝlm
h denote the approximations of the metric tensors ĝ and ĝlm, respectively.

Consequently, Eq. (21) can be approximated by Eq. (27) in the following manners. For a certain index k of
the central grid points (i, k), c = c1 and j = j1, if the (virtual) grid point corresponding to k þ 1

2
belongs to the

dot. Similarly, c = c2 and j = j2, if k þ 1
2

belongs to the matrix:
�Sþði; k; jÞ þ S�ði; k; jÞ þ ri

4
ðA2A1

ffiffiffiffiffi
ĝh

p
cÞi;k þ

n2

4ri
ðA2A1

ffiffiffiffiffi
ĝh
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¼ ri

4
A2A1

ffiffiffiffiffi
ĝh

p� �
i;k

kbF n
i;k: ð27Þ
Combining above finite difference scheme under the skewed curvilinear coordinate system, the resulting gen-
eralized eigenvalue system to be solved becomes
AS
bF ¼ kBS

bF ; ð28Þ

where AS is a symmetric positive definite matrix with nine non-zero components in every row and BS is a diag-
onal matrix.

2.3. Mixed scheme

Now we consider a mixed scheme combining the finite difference schemes developed in Sections 2.1 and 2.2.
The idea of the mixed scheme is inspired by the discretization scheme of the elliptic operator $ Æ (j(x)$) pro-
posed by Huang and Wang in [7], in which the scheme is developed to solve the elliptic interface problems with
jump conditions in the form of (4). Further, it has been shown that under certain conditions: (i) the resulting
discretization matrix is symmetric and positive definite, (ii) the method is monotone preserving (i.e. the coef-
ficient matrix in the resulting linear system is a M-matrix), and (iii) the scheme has the second-order accuracy.
As the elliptic interface problems (4) and the Schrödinger equation (1) have similar elliptic operator, we thus
suggest applying the idea of mixed discretization scheme to the problem considered here with following
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remark. It is not clear whether the mixed method has the second-order accuracy analytically while applying in
the eigenvalue problem (1). In our numerical experiments, however, the mixed method does achieve the sec-
ond-order convergence numerically and performs stably in the sense that all target eigenpairs have been
obtained.

We combine the two schemes defined in (11) and (21) to form a new mixed scheme by using the symmetry
preserving average. First, we show that Eq. (29) is actually equivalent to the original target problem (1).
Consider
uð� ffiffiffi
g
p r � ðxjrFÞ þ x

ffiffiffi
g
p

cFÞ þ �
ffiffiffî
g

p
r � ðð1� xÞjrFÞ þ ð1� xÞ

ffiffiffî
g

p
cF

� �
¼ k

ffiffiffî
g

p
F; ð29Þ
where x is a constant that 0 6 x 6 1. Since
ffiffiffî
g

p
¼ u

ffiffiffi
g
p

(see Eq. (25)), we can divide both sides of Eq. (29) byffiffiffî
g

p
to obtain
xð�r � ðjrF Þ þ cF Þ þ ð1� xÞð�r � ðjrF Þ þ cF Þ ¼ kF ; ð30Þ

or
�r � ðjrF Þ þ cF ¼ kF ;
which is exactly the same equation as the target problem (1). Note that the derivation above holds similarly
provided x is a location depended weight function.

Without loss of generality, we take Dn1 = Dn2 (and therefore u = 1) to obtain the following equation:
xð�
ffiffiffî
g

p
r � ðjrF Þ þ

ffiffiffî
g

p
cF Þ þ ð1� xÞ �

ffiffiffî
g

p
r � ðjrF Þ þ

ffiffiffî
g

p
cF

� �
¼ k

ffiffiffî
g

p
F : ð31Þ
By further applying the Fourier transformation and other techniques discussed in the previous sub-sections,
Eq. (31) can be approximated by the corresponding discretization schemes discussed in previous sections. To
be specific, the resulting eigenvalue system becomes
AM
bF n ¼ kBM

bF n; ð32Þ
where AM = xAL + (1 � x)AS, BM = BL = BS, and x is a constant function.

Remark. Though it has been shown in [7] that there exist a weight function x such that the discretization of
the mixed scheme is monotone for the problem described in (4), how x affect the eigenvalue problem (1) is
again unclear analytically. However, we have investigated numerically the effect of the weight function x and
then make a suggestion of choosing the weight function to increase the efficiency of the mixed scheme in
Section 4.2.
2.4. Approximations of matrix tensors

In this section, we present the approximations of the matrix tensors used in the discretization schemes. Note
that similar matrix tensor approximations are considered in [7].

Let ĝh
l;m denotes the second-order approximation of the metric tensor ĝlm in the skewed curvilinear coordi-

nate (g1, g2). By the definition of ĝlm in Eq. (23), ĝh
l;m can be easily computed by the difference quotients of the

position vectors xij’s as follows:
ðĝh
11Þiþ1

2;kþ
1
2

:¼ xiþ1;kþ1 � xi;k

Dg1
� xiþ1;kþ1 � xi;k

Dg1
;

ðĝh
22Þiþ1

2;kþ
1
2

:¼ xi;kþ1 � xiþ1;k

Dg2
� xi;kþ1 � xiþ1;k

Dg2
;

ðĝh
12Þiþ1

2;kþ
1
2
¼ ðĝh

21Þiþ1
2;kþ

1
2

:¼ xiþ1;kþ1 � xi;k

Dg1
� xi;kþ1 � xiþ1;k

Dg2
:

It should be noted that these quantities are all evaluated at cell centers. By Eq. (24), the numerical analogous
formula is
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ĝh ¼ det
ĝh

11 ĝh
12

ĝh
21 ĝh

22

� �
:

According to Eq. (26), the numerical quantities ĝlm
h ’s can be obtained by solving the linear system
X2

i¼1

ĝli
h ĝh

im ¼ dl
m ;
that is, for l,m = 1,2,
ĝh
11 ĝh

12

ĝh
21 ĝh

22

� �
ĝ11

h ĝ12
h

ĝ21
h ĝ22

h

 !
¼

1 0

0 1

� �
:

Let gab
h be the second-order approximation of the metric tensor gab in the ordinary curvilinear coordinate

(n1, n2). Then, inspired by (25), we define
ffiffiffiffiffi
gh
p

:¼ 2Dn1Dn2

ðDn1Þ2 þ ðDn2Þ2
ffiffiffiffiffi
ĝh

p
:

From the definitions of gab, ĝlm and (g1, g2) in Eqs. (6), (22) and (19), (20), respectively, we have
g11 ¼ ðDn1Þ2 þ ðDn2Þ2

4ðDn2Þ2
ðĝ11 þ ĝ22 � 2ĝ12Þ;

g22 ¼ ðDn1Þ2 þ ðDn2Þ2

4ðDn1Þ2
ðĝ11 þ ĝ22 þ 2ĝ12Þ;

g12 ¼ g21 ¼ ðDn1Þ2 þ ðDn2Þ2

4Dn1Dn2
ðĝ11 � ĝ22Þ:
Therefore, we define
ðg11
h Þiþ1

2;kþ
1
2

:¼ ðDn1Þ2 þ ðDn2Þ2

4ðDn2Þ2
ðĝ11

h þ ĝ22
h � 2ĝ12

h Þiþ1
2;kþ

1
2
;

ðg22
h Þiþ1

2;kþ
1
2

:¼ ðDn1Þ2 þ ðDn2Þ2

4ðDn1Þ2
ðĝ11

h þ ĝ22
h þ 2ĝ12

h Þiþ1
2;kþ

1
2
;

ðg12
h Þiþ1

2;kþ
1
2
¼ ðg21

h Þiþ1
2;kþ

1
2

:¼ ðDn1Þ2 þ ðDn2Þ2

4Dn1Dn2
ðĝ11

h � ĝ22
h Þiþ1

2;kþ
1
2
:

3. The eigenvalue problem solver

In Section 2, we have discussed three finite difference schemes aiming at solving the Schrödinger equation.
These schemes lead to the large-scale generalized eigenvalue systems in the form of (18), (28) and (32). To solve
these eigenvalue problems, we use the Jacobi–Davidson method (JDM) sketched in Fig. 4. The preference of
the JDM is based on the successful experience on solving the eigenvalue systems arising in various QD models
detailed in [8,9,19].

While the framework of the JDM used in this paper is similar to the ones in [8,9,19], we can further improve
the algorithm by solving the correct equation
I � pku�k
u�kpk

� �
ðA� hkBÞ I � ukp�k

u�kpk

� �
t ¼ �rk ð33Þ
in Step (v) of Fig. 4 by using preconditioning iterative approximations as suggested in [17]. The method uses a
preconditioner



Fig. 4. The Jacobi–Davidson method for computing the target eigenvalues and the associated eigenvectors of generalized eigenvalue
problems Ax � kBx = 0.
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Mp � I � pku�k
u�kpk

� �
M I � ukp�k

u�kpk

� �
� I � pku�k

u�kpk

� �
ðA� hkBÞ I � ukp�k

u�kpk

� �
;

where M is an approximation of (A � hkB), and an iterative method to solve Eq. (33). In each of the iterative
steps, the solution of the linear system
Mpt ¼ y
is computed as follows for a certain given vector y:
t ¼M�1y � fM�1Buk; ð34Þ

where
f ¼ uT
k BM�1y

uT
k BM�1Buk

:

While there are various iterative methods available and many parameters allowing tuning up, we adopt the
following heuristic strategies to gain better timing efficiency while solving Eq. (33).

These heuristic strategies are determined by the numerical experience and adaptive residual stopping crite-
ria. The iterative methods are stopped if the residual of the linear systems are less than the accuracy require-
ment that are set to be gradually higher and higher as the iterations go on. The heuristics are specified by the
linear system solver GMRES [15] and Bi-CGSTAB [18], preconditioning strategy SSOR [6], maximum itera-
tion number, and residual stopping criterion. For example, {GMRES, SSOR, 30, 10

�3} indicates that
GMRES with SSOR preconditioner is used to solve a linear system, the maximum iteration number is 30,
and the residual stopping criterion is 10�3. The specific heuristic strategies used to solve the linear system
(33) are described as follows:

� To compute the first smallest positive eigenvalue (k1): in such cases, Step (v) of the algorithm in Fig. 4 is
changed to the pseudo-code illustrated in Fig. 5.
� To compute the other positive eigenvalues (k2, k3, . . .): in such cases, Step (v) of the algorithm in

Fig. 4 is changed to the pseudo-code illustrated in Fig. 6. Note that the variable j is set to be equal
to 15 initially.



Fig. 5. The heuristic strategy for computing the smallest positive eigenvalue.

Fig. 6. The heuristic strategy for computing eigenvalues other than the smallest positive one.
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4. Computational results

We have implemented the proposed schemes and conducted numerical experiments to evaluate the effi-
ciency, accuracy, and convergence behavior of the schemes. We first describe the implementation details in
Section 4.1 and then demonstrate the performance results in Section 4.2.

The numerical experiments are conducted on a workstation running HP Unix. The workstation is equipped
with an Intel 1.3 GHz Itanium II CPU and 24-gigabyte main memory. The simulation (811 · 2390 grid points)
takes up about 1.2-gigabyte main memory.

The proposed schemes are implemented by Fortran 90 and compiled by the HP Fortran Compiler with
options +DSitanium2 +O2 +U77 +DD64 +Ofast +Onolimit.

4.1. Implementation details

First of all, we describe how we choose the grid points in the numerical experiments. The grid points in the
3D physical domain are denoted as (ri,j,k, hi,j,k, zi,j,k), for i = 1, . . ., M, j = 1, . . ., L, and k = 0, . . ., N. For com-
putational purposes, however, we only need to consider the discretization scheme on the 2D hyperplanes
spanned by the radial and axial directions. This is because the target 3D problem can be decoupled into a
sequence of independent 2D problems as shown in Section 2.1. Therefore, we use the abbreviations (ri,k,zi,k)
to denote the grid points for a certain hyperplane with a fixed h.

The grid points are chosen uniformly along the radial direction, with a modification that the grid points are
shifted with a half mesh width [12]. The grid points located on the top and bottom of the QD are determined
by user defined smooth shape functions in the physical domain that fit the QD shape to be simulated. Grid
points in zone ZA, ZB, and ZC (as shown in Fig. 7) are chosen by the following means. The grid points
in zone ZB are chosen uniformly along the axial axis. In zone ZA and ZC, however, the grid points are chosen
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Fig. 7. Discretization schema of a 2D half plane. Grid points are indexed from 1 to M in the radial coordinate and 0 to N in the axial
coordinate. The grid points located on the two curves that fit the bottom and the top of the QD are indexed as N1 and N2, respectively. The
r–z hyperplane is divided into three zones: ZA (below the QD), ZB (interior of the QD), and ZC (above the QD). The heights of ZA, ZB,
and ZC in the center are denoted as HA, HB and HC, respectively. The height of the wetting layer in the matrix boundary is denoted by
HRmtx .
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non-uniformly in a way that fine meshes are created around the heterojunction. Such non-uniform mesh
scheme allows us to capture rapid changes of wave functions around the heterojunction. Fig. 8 illustrates a
schema of the grid points on the r–z hyperplane. As shown in Fig. 8, the chosen grid points are usually con-
densed more than necessary in the thin wetting layer of the QD. We adopt this particular grid distribution on
the physical domain simply for programming convenience, rather than for accuracy nor efficiency consider-
ations. It can be seen that the resulting computational domain is a logical rectangle with uniform mesh and
two coordinate lines (in physical space) aligned with the interfaces. Consequently, the uniform lattice in the
computational domain can significantly ease the computer programming efforts. However, it is worth noting
that the computational cost and convergence rate for both uniform and distorted grids are actually similar
based on our numerical experiments.

Taking our implementation as an example, the grid points along the radial direction are
F

ri;k ¼ rðn1
i ; n

2
kÞ ¼ i� 1

2

� �
Dr;
where Dr ¼ Rmtx

M�1
2

for all i and k. By using the notations introduced in Fig. 7, we define zi,k’s as follows. The grid
points located on the bottom of the QD are specified by the (linear) shape function:
Radial coordinate

A
xi

al
 c
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rd
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at

e

ig. 8. A schema of the grid points on the r–z hyperplane. The circled grid points indicate the interfaces of the quantum dot.
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zi;N1
¼ zðn1

i ; n
2
N1
Þ ¼ N 1hz;
where hz is a length constant defined as
hz ¼
HB

N 2 � N 1

¼ H A

N 1

¼ H C

N � N 2
for i = 1, . . ., M. The grid points located on the top of the QD are determined by the (nonlinear) shape func-
tion in the physical domain:
zi;N2
¼ zðn1

i ; n
2
N2
Þ ¼ stopðriÞ;
where
stopðrÞ ¼ aþ ðH A þ HB � aÞe�ðr=RmtxÞ2	ð4096=500Þ ð35Þ

and
a ¼ H A þ HR1 ð36Þ

for i = 1, . . ., M. Here, H R1 is a reference height that will be specified below.

The grid points in other parts are defined as follows:
zi;k ¼ zðn1
i ; n

2
kÞ ¼

‘ði; kÞ � q1ði; kÞ; for 1 6 k 6 N 1; ðin ZAÞ
‘ði; kÞ; for N 1 6 k 6 N 2; ðin ZBÞ
‘ði; kÞ þ q2ði; kÞ; for N 2 6 k 6 N ; ðin ZCÞ

8><>: ð37Þ
where
‘ði; kÞ ¼ N 1hz þ
stopðriÞ � N 1hz

ðN 2 � N 1Þhz
ðk � N 1Þhz;

q1ði; kÞ ¼ ‘ði; 0Þ
N 1 � k

N 1

� �2

;

q2ði; kÞ ¼ ðzN � ‘ði;NÞÞ
k � N 2

N � N 2

� �2

:

Note that Eq. (37) can be realized from another viewpoint as follows. For a fixed i, zi,k is constructed as a C1

function of k which is linear in ZB and quadratic in ZA and ZC.
Finally, we specify some details of our implementation. The structure parameters illustrated in Fig. 7 are:

HA = 16.4 nm, HB = 8.2 nm, HC = 16.4 nm, HR1 ¼ 8:2=7 nm, and Rmtx = 14 nm.
The effective electron mass for the QD and the matrix are 0.024me and 0.067me, respectively. The confine-

ment potential c1 = 0.000 eV and c2 = 0.770 eV. The iteration process within the Jacobi–Davidson subroutine
terminates when the absolute error of the residual in the eigenvalue problems less than 1.0 · 10�10 for the com-
puted eigenpairs.

4.2. Performance of the schemes

Denoting the three schemes discussed in Sections 2.1, 2.2 and 2.3 as Sc (on curvilinear coordinates), Ss (on
skewed curvilinear coordinates), and Sm (mixed scheme), respectively, we now present the performances of the
schemes in terms of the computation of eigenpairs, timing results, and convergence rates. Note that schemes Ss

and Sc are the special cases of Sm that x = 0 and 1, respectively.

4.2.1. Computed eigenpairs

We first focus on the results of computed eigenpairs. While the three schemes are able to compute all the
physical meaningful bound state energies, scheme Ss does produce spurious eigenpairs. Furthermore, the
eigenvectors corresponding to these redundant eigenvalues are oscillatory. Fig. 9 shows the spectrums of
the computed eigenvalues. It is clear that all of the three schemes result in similar target eigenvalues, while
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scheme Ss leads to several extra computed eigenvalues. It is worth noting that these spurious eigenvalues do
not simply vanish whenever scheme Sm is used for x > 0. Fig. 10 shows how these spurious eigenvalues
increase to the values that are larger than the energy gap 0.770 eV (i.e. beyond the target region) for tiny
x’s. The figure also suggests that even a relatively small weighting parameter (e.g. x = 0.001) enables scheme
Sm to avoid obtaining spurious eigenvalues. Fig. 11 further shows the eigenvector corresponding to the spu-
rious eigenvalue (0.2327 eV) produced by Scheme Ss. It is clear that this wave function (eigenvector), and other
eigenvectors corresponding to the spurious eigenvalues, are oscillatory. Such spurious eigenvalue and oscilla-
tory eigenvector behavior of Ss, while solving Eq. (21), is due to the fact that no Dirichlet boundary condition
is imposed on r = 0 and thus the Black–Red decoupling occurs.
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Fig. 11. The eigenvector corresponding to the spurious eigenvalue (0.2327 eV) produced by Scheme Ss is oscillatory. The eigenvector is
plotted over the r–z hyperplane. For clearness, only the eigenvector values on the a certain axial lines are presented here. The quantum dot
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Fig. 12. Average timing results for computing all the target eigenvalues. Scheme Ss (x = 0), Sc (x = 1), and Sm (x = 0.1–0.9) are
compared by using three different SSOR preconditioner parameter r that is equal to 1.7, 1.8, and 1.9. The results suggest that the mixed
scheme Sm that x = 0.2 is the best choice generally.
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4.2.2. Timing results

Fig. 12 shows average timing results of Sm for computing all the target eigenpairs by letting SSOR precon-
ditioner parameter r = 1,7, 1.8, and 1.9. In the figure, the x-axis represents the weight coefficient x defined in
Eq. (31). The matrix dimensions of the eigensystem is 811 · 2390 = 1,935,090. It is obvious that scheme Sm for
x = 0.2 generally outperforms other cases in timing, no matter what value of r is. Furthermore, the figure
suggests that the optimal choice of r is 1.9 and the choice leads to efficient timing results for a wide range
of x’s.

4.2.3. Convergence rates

We demonstrate convergence rates of the three schemes while computing all the target eigenvalues. To mea-
sure the convergence rate, we run the tests over the meshes described in Table 1 and then calculate the rates by
Table
Dimen

(M, N)

(21, 60
(62, 18
(185, 5
(554, 1
(1661,
rate½i� ¼ log3

k½i� � k½iþ1�

k½iþ1� � k½iþ2�

� �
; for i ¼ 1; . . . ; 3;
where k[i] for i = 1, . . ., 3 denote the approximate eigenvalues obtained from the meshes described in the table.
Fig. 13 illustrates the convergence rates, rate[1], rate[2], and rate[3], for all target eigenvalues computed by the
1
sion information regarding the computation of convergence rates

Matrix dimension (M � 1) Æ (N � 1) Eigenvalue Rate of convergence

) 1180 k[1] –
0) 10,919 k[2] –
40) 99,176 k[3] rate[1]

620) 895,307 k[4] rate[2]

4860) 8,065,940 k[5] rate[3]
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Fig. 13. The eigenvalue convergence rates for schemes Sc, Ss, and Sm are shown in part (a), (b) and (c), respectively.



Table 2
Summary of the proposed numerical schemes

Scheme Formula Spurious eigenpair Timing Conv. rate

Sc In between None Slow �2 (with variation)
Ss Simple Several Quick �2
Sm Complicated None Quickest (for x = 0.1) �2
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schemes Sc, Ss, and Sm. From the figure, we see that all the convergence rates of Ss and Sm are close to 2. For
Sc, the rate[2]’s and rate[3]’s are close to 2; however, several rate[1]’s are less than 2. In short, all three schemes
achieve second-order convergence rates for fine grids. Furthermore, schemes Ss and Sm have also achieved sec-
ond-order convergence rate steadily, even for loose grids.

The characteristics of the three numerical schemes are summarized in Table 2. Observing the table, we con-
clude that, with the price of more complicated formulas, Scheme Sm converges to the eigenpairs quickest,
achieves second-order convergence rate consistently, and does not result in any spurious eigenpairs.

5. Conclusion

This article aims at developing efficient, robust, and accurate numerical schemes to simulate quantum dots
with irregular dot shape. We have proposed three second-order finite difference schemes to discretize the
Schrödinger equation. The first scheme is developed naturally on a curvilinear coordinate system fitting the
shape of the quantum dot. The second scheme uses the skewed curvilinear coordinate system and leads to sim-
ple formulas. The third scheme combines the two previous schemes by a symmetric averaging. The resulting
large-scale generalized linear eigenvalue problems are solved efficiently by a modified Jacobi–Davidson
method. Intensive numerical experiments have shown that the mixed scheme converges to the eigenpairs
quickest, achieves second-order convergence rate consistently, and does not result in any spurious eigenpairs.
While the numerical experiments have shown very promising results, theoretical analysis of the discretizations
and the resulting eigenvalue problems are still open.
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Appendix

By the definitions of the operators Dn1 , Dn2 , A1, and A2, Eqs. (13)–(16) can be represented as
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